Combining Transformations

These notes are intended as a summary of section 3.4 (p. 219 - 225) in your workbook. You should also read the section for more complete explanations and additional examples.

The graph of $y=x^{3}$ is shown below.

On the same axes, draw each of the following:

1. The image graph of $y=x^{3}$ after a translation of 2 units down, followed by a vertical stretch by a factor of 3 .
2. The image graph of $y=x^{3}$ after a vertical stretch by a factor of 3 followed by a translation of 2 units down.

Notice that the 2 resulting graphs are not the same. This illustrates a very important concept:
When two or more transformations are applied to a graph, the order in which the transformations are applied matters!!

How to Combine Transformations

When drawing a graph from an equation, to ensure the correct image is sketched, always perform the transformations in the following order:

1. Stretches or Compressions
2. Reflections
3. Translations

Note: This order assumes that the equation is written in the form $y=a \cdot f(b(x-h))+k$. If it is not, you must first rewrite the equation in the correct form.

Note: In general, every point (x, y) on the original graph will become a point $\left(\frac{x}{b}+h, a y+k\right)$ on the image graph.

To see how this is done, let's draw the graph of $y=\frac{1}{4}|2(x+3)|+4$.

Example 1 (sidebar p. 221)

Here is the graph of $y=g(x)$. Sketch and label its image after a vertical compression by a factor of $\frac{1}{3}$, then a translation of 2 units up.

Example 2 (sidebar p. 223)
Here is the graph of $y=f(x)$. Sketch the graph of $y=f\left(\frac{1}{2}(x+1)\right)-4$. State the domain and range of each function.

Example 3 (sidebar p. 224)

Use the graph of $y=\sqrt{x}$ to graph $y-2=-\sqrt{3 x+3}$. What are the domain and range of $y-2=-\sqrt{3 x+3}$?

Example 4 (sidebar p. 225)

The graph of $y=g(x)$ is the image of the graph of $y=f(x)$ after a combination of transformations. Corresponding points are labelled. Write then verify an equation for the image graph in terms of the function f.

Homework: \#3-11 in the exercises (p. 226-233). Answers on p. 233.

